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Abstract

Observer design for highly nonlinear dynamics is an im-
portant issue, particularly when the locally observable
dynamics are not linearly observable. In such circum-
stances the ability to reduce the system to observable
or observer form is key to observer design. We describe
and illustrate symbolic computing tools to do that.
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1 Introduction

Observers are a central part of fault detec-
tion/identification processes as well as regulator
approaches to reconfigurable control systems. Our
immediate interests have to do with control reconfig-
uration in aircraft following actuator failure. When
nonlinearities are essential, e.g., when operating
around bifurcation points or near stability boundaries,
issues of observability and observer design present
new complexities that are absent in linear problems.
For example, in linear systems, the input does not
play a role in deciding observability. But a nonlinear
system may be observable for some inputs and not so
for others. As a result new theoretical paradigms for
observer design for nonlinear systems have emerged
over the past decade.

The literature contains many design alternatives for
systems that are linearly observable. When this is
not the case, available techniques are far more limited.
Moreover, application experience from which to draw
conclusions about their relative practical merits is vir-
tually nonexistent. One reason for this is, undoubtedly,
the lack of computational tools. In this paper we de-
scribe some results from an ongoing software develop-
ment project. The ability to reduce the system to ob-
servable or observer form is fundamental to nonlinear
observer design, and it is the main focus of this paper.

We begin with an overview of observability and a short
and necessarily incomplete summary of nonlinear ob-
server design methods. Then we describe the computa-
tions required to construct the observable and observer.
Examples follow. Our results exploit the differential
calculus constructions of [6] and extend the capabil-
ities of the computations described by Bensacon and
Bornard [7] to the multiple input/multiple output case.

2 Nonlinear System Observability and
Observers

Consider the nonlinear system

ẋ = f(x) +
m∑

i=1

gi(x)ui = fu(x)

y = h(x)
(1)

where x ∈ M (a neighborhood of x0 in Rn), u ∈ Rm,
and y ∈ Rp. We assume x0 is an equilibrium point
corresponding to zero input and output, i.e., f(x0) =
0, h(x0) = 0. The functions f, gi, h are smooth.

2.1 Observability
The observation space O of system (1) is the linear
space of functions M → R over the field R spanned by
all functions of the form

Lvk
· · ·Lv1(hi), k ≥ 0, 1 ≤ i ≤ p,
vk, · · · , v1 ∈ {f, g1, . . . , gm} (2)

It is important to emphasize that the observation space
consists of all linear combinations of the functions (2)
with real constant coefficients – viz., ‘over the field R’.
An analytic system (1) is observable on M if and only if
for any x1, x2 ∈ M , x1 6= x2, there is a function Φ ∈ O
such that Φ(x1) 6= Φ(x2). Associated with the observa-
tion space O is it’s differential dO, the codistribution

dO = span {dλ |λ ∈ O}

The observability codistribution, ΩO, is the small-
est codistribution that contains the covectors



{dh1, . . . , dhp} and is invariant with respect to
the vector fields f, g1, . . . , gm. If dO is nonsingular,
then dO = ΩO.

Let us recall some common tests for observability of the
nonlinear system (1). The system is locally observable
at x0 if the observability codistribution, ΩO has rank n
at x0. This is called the observability rank condition. If
x0 is a regular point of ΩO(x0), the observability rank
condition is necessary as well as sufficient. A sufficient
condition for local observability at x0 is that the some-
what more friendly distribution

ΩL = span
{
Lk

f (dhi) , 1 ≤ i ≤ p, 0 ≤ k ≤ n− 1
}

has rank n at x0. When dimΩO(x0) = n but
dimΩL(x0) < n, the implication is that some states are
distinguishable only under the action of control inputs.
When this occurs, most control inputs do distinguish
the states. There are a few singular inputs, notably
u = 0, that do not. Thus, when dim ΩL(x0) = n we
will use the terminology observable for zero input at
x0. It is also possible to test the linearization of (1) at
x0 for observability. That is, define

A0 =
∂f

∂x
(x0), C0 =

∂h

∂x
(x0)

and test the pair (A0, C0). If the linearization is ob-
servable then we say that it is linearly observable at x0.
Linear observability implies zero-input observability. It
is easy to prove that a system is linearly observable at
x0 if and only if dim ΩL(x0) = n. Thus, we have the
following hierarchy

dimΩO(x0) = n ⇒ locally observable
⇑ ⇑

dimΩL(x0) = n ⇒ zero input observable
m ⇑

dim




C0

C0A0
...

C0A
n−1
0


 = n ⇔ linearly observable

2.2 Approaches to Nonlinear Observer Design
An observer for the system (1) is a dynamical system
with inputs y(τ), u(τ), 0 ≤ τ ≤ t and output x̂(t) ∈ Rn

such that x̂(t) is an estimate of x(t) in the sense that
‖x(t)− x̂(t)‖ → 0 as t → ∞. When (1) is linearly ob-
servable (even detectable) there are many approaches
to observer design. Most prevalent among these is the
constant gain observer. Linear observability implies a
matrix L can be chosen so that following is a local ex-
ponential observer for (1):

˙̂x = f(x̂, u) + L (Hx̂− y) (3)

In fact, it is sometimes possible to choose L so that
(3) is a global observer [10], [11], [12]. Other related
approaches exist, like the sliding mode observer of [13].

Normal form observers are also limited to linearly ob-
servable (at least detectable) systems. Introduced in
[14], they were generalized in [15] and [16]. Suppose
f(x) and h(x) in (1) have formal power series expan-
sions. Then one seeks a ‘near identity’ change of co-
ordinates x = T (z) in the form of a power series that
leads to an (autonomous, u = 0) observer with linear
error dynamics in the new coordinates.

On the other hand, if (1) is locally observable but not
linearly observable, there are fewer options for observer
design. Observer design based on linearization up to
output injection was introduced in [1] for the single
output case without inputs, extended to the multiple
output case in [2], see also [9]. In this approach the
idea is to transform the system (1) into the so-called
‘observer form’

ż = Az + ϕ(y), y = Cz (4)

where A,C is an observable pair. When this is done,
observer design is very easy. As might be expected, sys-
tems that can be transformed into the form (4) are rare
but it is interesting to note that linear observability is
not necessary if we do not insist that the transformation
be a diffeomorphism.

Xia and Zeitz [8] give conditions for observer construc-
tion for systems that are zero-input observable (see
above hierarchy). This method (as do many others)
begins with reduction of (1) to an ‘observable form’
that we will discuss below.

If the system (1) is locally observable, but not zero-
input observable, then we have the approach of Ham-
mouri et al [3-5]. The idea is to transform the system
into the ‘time varying’ version of (4), specifically the
‘observer form’ given in (6), below.

3 Computational Tools

When (1) is not linearly observable, but nonetheless lo-
cally observable, we need to be able to reduce the sys-
tem to either observable or observer form as a first step
to observer design using existing methods. Even for
linearly observable systems this may be a convenience.
In this section we describe the computations needed to
do that.

3.1 Control Sequences
One characterization of the observation space is given
by the following result.

Lemma 3.1 The observation space O is equivalent to
the linear vector space of functions M → R over the
field R

Õ = spanR

{
Lf

uk
. . . Lfu1 (hi)

∣∣∣∣
1 ≤ i ≤ p, k ≥ 0,

u1, . . . , uk ∈ {0, 1}m

}



Define a sequence of codistributions

E0 := span{dh}
Ek = Ek−1

+span
{

dLfuk
· · ·Lfu1

(h) |ui ∈ {0, 1}m, i = 1, . . . , k
}

We assume that there exists a smallest p∗ such that

E0 ⊂ · · · ⊂ Ep∗ = Ep∗+1 = dO
Let nk denote the codimension of Ek−1 in Ek. Then
there exists sets of control sequences (see [4])

I1 = {(ui1) |ui1 ∈ {0, 1}m } ,
I2 = {(ui1 , ui2) |ui1 ∈ {0, 1}m, ui2 ∈ {0, 1}m } ,

...

that satisfy

(a) If
(
ui1 , . . . , uij

) ∈ Ij then
(
ui1 , . . . , uij−1

) ∈ Ij−1,
for j ≥ 2.

(b) The one forms
⋃k

l=1

{
dLful

· · ·Lfu1
(h) |(ui1 , . . . , uil

) ∈ Il

}
∪{dh}

form a basis for Ek on a neighborhood of x0. The
cardinal number of Ik is nk.

We obtain the control sequences, Ik, by directly con-
structing the codistributions Ek, sequentially. See [4]
for more details about the single output case.

3.2 Observability Indices
Consider the set of Ij consisting of nj j-tuples:

Ij =
{(

u1
i1 , . . . , u

1
ij

)
, . . . ,

(
u

nj

i1
, . . . , u

nj

ij

)}

and define the p ·nj -vector of jth order Lie derivatives

Lftj
(h) =




Lf
u1

i1

· · ·Lf
u1

ij

(h)

...
Lf

u
nj
i1

· · ·Lf
u

nj
ij

(h)




Now, consider the collection of covectors dLfti
(h) for

i = 0, . . . , p∗, which we can arrange in the (block)
tableau

dh1 dh2 · · · dhp

dLft1
(h1) dLft1

(h2) · · · dLft1
(hp)

...
...

...
...

dLftp∗
(h1) dLftp∗

(h2) · · · dLftp∗
(hp)

From this set we seek to identify a maximal set of inde-
pendent covectors. We can do this by searching down
columns or across rows (recall the linear counterpart).
For a row search, begin with the first row and work from
left to right, then move to the next row. If the outputs
are them selves independent, we identify p chains of
covectors dhi dLf1

i
(hi) · · · dL

f
κ1−1
i

(hi) of length
κi, i = 1, . . . , p. The integers κi are the observability
indices. For an observable system κ1+κ2+· · ·+κp = n.

3.3 Observable, Observer Forms
If the system is observable, then we can define new state
variables z ∈ Rn via the transformation x → z.

z =




h1

...
L

f
k1−1
1

(h1)
...

hp

...
L

f
kp−1
p

(hp)




(5)

If the inverse is continuous and the the transformed
equations produce unique solutions we call the trans-
formed equations an observable form. This is consis-
tent with the usual terminology for linear systems and
autonomous nonlinear systems. In the latter case, the
transformed equations are in the form of p chains,

ż1 = z2 · · · żκ1+···+κp−1+1 = zκ1+···+κp−1+2

... · · · ...
żκ1−1 = zκ1 · · · żκ1+···+κp−1 = zκ1+···+κp

żκ1 = ϕ1(z) · · · żκ1+···+κp = ϕp(z)
y1 = z1 · · · yp = zκ1+···+κp−1+1

Remark 3.2 (Xia and Zeitz) Note that if

rank




dh1

...
dL

f
k1−1
1

(h1)
...

dhp

...
dL

f
kp−1
p

(hp)




(x0) = n

the implicit function theorem guarantees the existence
of a smooth (local) inverse of the transformation (5) so
that the transformation is a diffeomorphism. However,
an inverse may exist even if the rank condition fails.
In this case, the inverse will only be continuous. If the
transformed differential equations have unique solutions
on a neighborhood of x0, then this is still a useful trans-
formation. This point is described more fully in Xia and
Zeitz [8].

Now, we consider transforming (1) into the special form
(time-varying linear up to output injection)

ż = A (u(t)) z + ϕ (y, u(t))
y = Cz

(6)

In this form it is possible to use linear methods for
observer design. Equation (6) will be called an observer
from of which (4) is a special case. Not every locally
observable nonlinear system (1) has an observer form.



The formulation we follow is that of [3-5]. First, let us
introduce some definitions. Consider a set of p vector
fields, X = {X1, . . . , Xp}. Sequentially define sets of
p + 1-forms

ΩX
1 = spanR {dLfu(h) ∧ dh |u ∈ {0, 1}m }

ΩX
k+1 = spanR

{
dLfu

(iXα) ∧ dh
∣∣α ∈ ΩX

k , u ∈ {0, 1}m
}

ΩX =
∑

k≥1 ΩX
k

Let if (ω) denote the usual contraction of the form ω
with respect to the vector field f . The we use the no-
tation

iX(ω) = iX1 ◦ · · · ◦ iXp(ω)

The following is multiple output version of a theorem
of Hammouri and Kinnaert [4] (see also [5]).

Proposition 3.3 The system (1) is transformable into
the observer form (6) if and only if:

(1) dh1 ∧ · · · ∧ dhp(x0) 6= 0

(2) The set of vector fields X1, . . . , Xp satisfies

(a) dim ΩX = n− p

(b) ∀ω ∈ ΩX , diX(ω) = 0

(c) iX(ω1)∧· · ·∧iX(ωn−p)∧dh1∧· · ·∧dhp(x0) 6=
0

If these conditions hold, then the transformation is
given by

z1 = h1(x), . . . , zp = hp(x)
dzj+p = iX(ωj), j = 1, . . . , n− p

where ωj), ; j = 1, . . . , n− p is a basis for ΩX .

Now, we need to provide a construction for the set
of vector fields X. First, obtain a set of vector fields
Y1, . . . , Yp that satisfy



dh1

...
dL

f
k1−1
1

(h1)
...

dhp

...
dL

f
kp−1
p

(hp)




[
Y1 · · · Yp

]
=




0 · · · 0
...

. . .
...

1 0

0
...

0 · · · ...
... · · · 0
0 · · · 1




For any control sequence u1, u2, . . . we can define the
set of vector fields

Zi
u1···uκi−1

=
[
fuκi−1 , [· · · [fu1 , Yi] · · ·]

]
, i = 1, . . . , p

Now, identify the subset of control sequences I ⊆ Ip∗

that satisfy

det
[
LZ1

u1···uκ1−1
(h) · · · LZp

u1···uκp−1
(h)

]
6= 0

and use any one of these sequences to obtain
[

X1 · · · Xp

]
=[

LZ1
u1···uκ1−1

(h) · · · LZp
u1···uκp−1

(h)
]−1

·[
Z1

u1···uκ1−1
· · · Zp

u1···uκp−1

]

3.4 Implementation
The computations described above have been imple-
mented in a Mathematica package. The package has
three primary functions:

1. ObservabilityIndices

2. ObservableTransform

3. LinearizeToOutputInjection

These are supported by a number of utility functions
that compute the control sequences, solve the first order
partial differential equations of Proposition (3.3), and
others. Underlying these calculations are basic tools
for working with differential forms. We have slightly
extended the Exterior Differential Calculus package of
Bonanos [6]

4 Examples

Four examples follow that illustrate the computations.
In each case we compute both the observable and ob-
server forms. Example (4.4) is zero-output observable
but not linearly observable. Example (4.5) is locally
observable but does not satisfy the observability rank
condition. Example (4.6) is linearly observable. Exam-
ple (4.7) is not zero-input observable but satisfies the
observablity rank condition.

Example 4.4 (Xia & Zeitz example 2) First, we
consider a simple two output, autonomous example
from [8]. Although the transformation is smooth, its
inverse is only continuous.

In[1]:= f = {x1, x2};
h = {x1ˆ3 + x2ˆ5};
x = {x1, x2};

In[2]:= ObservabilityIndices[f, h, x, {u}]
Out[2]= {2}

observable form

In[3]:= {Trans, Ind} = ObservableTransform[f,

h, x, {u}]
Out[3]= {{x13 + x25, 3 x13 + 5 x25}, {2}}

In[4]:= z = {z1, z2};

In[5]:= InvTrans = InverseTransformation[x, z, T rans]



Out[5]=
{
−

(
− 1

2

)1/3

(5 z1− z2)1/3,

−
(
− 1

2

)1/5

(−3 z1 + z2)1/5
}

In[6]:= {newf, newg, newh} = TransformSystem[f/.u →
0, Coefficient[f, u], h, x, z, T rans, InvTrans]

Out[6]= {{z2,−15 z1 + 8 z2}, {0, 0}, {z1}}

Observer form

In[7]:= Trans = LinearizeToOutputInjection[f,

h, x, {u}]
Out[7]= {x13 + x25, 5 x13 + 3 x25}

In[8]:= z = {z1, z2};

In[9]:= InvTrans = InverseTransformation[x, z, T rans]

Out[9]=
{
−

(
− 1

2

)1/3

(−3 z1 + z2)1/3,

−
(
− 1

2

)1/5

(5 z1− z2)1/5
}

In[10]:= {newf, newg, newh} = TransformSystem[f/.u →
0, Coefficient[f, u], h, x, z, T rans, InvTrans]

Out[10]= {{8 z1− z2, 15 z1}, {0, 0}, {z1}}

Example 4.5 (Xia & Zeitz example 3) Now con-
sider a nonautonomous example, also from [8]. It is
not zero-input observable. Again the inverse transfor-
mations are not smooth.

In[11]:= p = 3;
f = {x2ˆp, x2 u};
h = {x1};
x = {x1, x2};

In[12]:= ObservabilityIndices[f, h, x, {u}]
Out[12]= {2}

Observable form

In[13]:= {Trans, Ind} = ObservableTransform[f,

h, x, {u}]
Out[13]= {{x1, x23}, {2}}

In[14]:= z = {z1, z2};

In[15]:= InvTrans = InverseTransformation[x, z, T rans]

Out[15]= {z1, z21/3}
In[16]:= {newf, newg, newh} = TransformSystem[f/.u →
0, Coefficient[f, u], h, x, z, T rans, InvTrans]

Out[16]= {{z2, 0}, {0, 3 z2}, {z1}}

Observer form

In[17]:= Trans = LinearizeToOutputInjection[f,

h, x, {u}]
Out[17]= {x1,−x23}

In[18]:= z = {z1, z2};

In[19]:= InvTrans = InverseTransformation[x, z, T rans]

Out[19]= {z1,−z21/3}
In[20]:= {newf, newg, newh} = TransformSystem[f/.u →
0, Coefficient[f, u], h, x, z, T rans, InvTrans]

Out[20]= {{−z2, 0}, {0, 3 z2}, {z1}}

Example 4.6 (Hou and Pugh) This example is
from Hou and Pugh [9]. They propose a method for
linearization to output injection for multiple output
autonomous systems different from that implemented
here. To obtain the observer form we need to reorder
the outputs.

In[21]:= f = {x2, x3 x2, x2};
CC = {{0, 1}, {1, 0}};
h = CC.{x1, x3};
x = {x1, x2, x3};

In[22]:= ObservabilityIndices[f, h, x, {u}]
Out[22]= {2, 1}

Observable Form

In[23]:= {Trans, Ind} = ObservableTransform[f,

h, x, {u}]
Out[23]= {{x3, x2, x1}, {2, 1}}

In[24]:= z = {z1, z2, z3};

In[25]:= InvTrans = InverseTransformation[x, z, Trans]

Out[25]= {z3, z2, z1}
In[26]:= {newf, newg, newh} = TransformSystem[f/.u →
0, Coefficient[f, u], h, x, z, T rans, InvTrans]

Out[26]= {{z2, z1 z2, z2}, {0, 0, 0}, {z1, z3}}

Observer Form

In[27]:= Trans = LinearizeToOutputInjection[f,

h, x, {u}]
Out[27]= {x3, x1,−2 x2 + x32}

In[28]:= z = {z1, z2, z3};

InvTrans = InverseTransformation[x, z,

Trans]

Out[28]=
{

z2,
1

2
(z12 − z3), z1

}

In[29]:= {newf,newg,newh} =

TransformSystem[f/.u → 0,

Coefficient[f, u], h, x, z,Trans,

InvTrans]

Out[29]=
{{1

2
(z12 − z3),

1

2
(z12 − z3), 0

}
,

{0, 0, 0}, {z1, z2}
}

Example 4.7 Now we consider a more elaborate ex-
ample. The system is locally observable, but it is not
observable with zero input.

In[30]:= f = {Exp[x1 + x2]− 1 + ux1ˆ2,
−Exp[x1 + x2] + 1 + u(Exp[x3− x2]

−Exp[−x1− x2]− x1ˆ2),
−Exp[x1 + x2] + 1 + x1ˆ3Exp[−x1− x3]− ux1ˆ2,
x5, x1};

h = {x1, x4};
x = {x1, x2, x3, x4, x5};

In[31]:= ObservabilityIndices[f, h, x, {u}]
Out[31]= {3, 2}



Observable form

In[32]:= {Trans, Ind} = ObservableTransform[f,

h, x, {u}]
Out[32]= {{x1,−1 + ex1+x2,

ex1+x2 (1− e−x1−x2 − ex1+x2 + e−x2+x3 − x12)+

ex1+x2 (−1 + ex1+x2 + x12), x4, x5}, {3, 2}}
In[33]:= z = {z1, z2, z3, z4, z5};

In[34]:= InvTrans = InverseTransformation[x, z, T rans]

Solve :: ifun : Inverse functions are being used by

Solve, so some solutions may not be found.

Out[34]= {z1,−z1 + Log[1 + z2],

−z1 + Log[1 + z3], z4, z5}
In[35]:= {newf,newg,newh} =

TransformSystem[f/.u → 0,

Coefficient[f, u], h, x, z,Trans,

InvTrans]

Out[35]= {{z2, 0, z13, z5, z1},
{z12, z3, 0, 0, 0}, {z1, z4}}

Observer form

In[36]:= Trans = LinearizeToOutputInjection[f,

h, x, {u}]
Out[36]= {x1, x4,−ex1+x2,−x5, ex1+x3}

In[37]:= z = {z1, z2, z3, z4, z5};

In[38]:= InvTrans = InverseTransformation[x, z, T rans]

Solve :: ifun : Inverse functions are being used by

Solve, so some solutions may not be found.

Out[38]= {z1,−z1 + Log[−z3],−z1 + Log[z5], z2,−z4}
In[39]:= {newf, newg, newh} = TransformSystem[f/.u →
0, Coefficient[f, u], h, x, z, T rans, InvTrans]

Out[39]= {{−1− z3,−z4, 0,−z1, z13},
{z12, 0, 1− z5, 0, 0}, {z1, z2}}

5 Conclusions

We have described symbolic computations for reducing
a nonlinear smooth affine systems to observable and ob-
server forms, when possible, as the first step in observer
design. These tools can be applied to systems that are
linearly observable, locally observable with zero input
or merely locally observable.
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